

North Carolina Geodetic Survey

North Carolina

Continuous Operating Reference Stations (CORS)

What is a CORS?

- Continuously Operating Reference Station (CORS)
 - A permanent Global Navigation Satellite System (GNSS) receiver, antenna (with a surveyed reference position), and support equipment

What is a CORS?

- Continuously Operating Reference Station (CORS)
 - NC CORS Network
 - Composed of 77 CORS
 - 3 new CORS have been installed
 - Salisbury (NCSA)
 - Roanoke Rapids (NCRR)
 - New Bern (NCNB)
 - 1 new CORS is being installed
 - Bodie Island (NCBI)
 - Collects data 24/7 at 1 second intervals
 - Receiver type
 - 67 GPS+GLONASS
 - 10 GPS

Former Pea Island CORS

What is a CORS?

- Continuously Operating Reference Station (CORS)
 - CORS in NC that are in the National CORS network but not included in the Real Time Network (RTN)
 - New Bern NDGPS (NBR5 and NBR6)
 - Greensboro NDGPS (NGR5 and NGR6)
 - Plate Boundary Observatory CORS at Rosman (P779)
 - Charlotte (CHME)
 - Conover (CONO)
 - Hillsborough (HILB)

National CORS

- National CORS Benefits
 - Included in OPUS solutions
 - Monitored by NGS (60 day plot)
 - Will be include in any future national adjustments

Operational & Proposed (CORS)

CORS Installation Components

Planning

- NGS Guidelines
- Hardware
- Monumentation
- Software
- Communication

Installation

- Documentation
- Submittal to NGS

Guidelines for New and Existing Continuously
Operating Reference Stations (CORS)
National Geodetic Survey
National Ocean Survey, NOAA
Silver Spring, MD 20910
February 2006

CORS Hardware

- GNSS Receiver
 - Uninterruptible Power Supply (UPS)
 - Receiver location
 - Surge protection
 - Internet connection

CORS Hardware

- GNSS Receiver
 - Uninterruptible Power Supply (UPS)
 - Receiver location
 - Surge protection
 - Internet connection

CORS Hardware

- GNSS Antenna
 - Antenna Type
 - Type of leveling device
 - Antenna location
 - Monumentation/mounting
 - Lighting protection
 - Grounding
 - Antenna cable
 - Length/Type
 - Routing

Guidelines – Equipment Antennas

- -L1 and L2
- -Radomes NOT recommended

WHY: distort signal and not required in design of antenna

-Oriented to true North

WHY: apply antenna phase center values correctly

-Reference mark to antenna reference point (ARP) constant

WHY: change antenna same coordinate

CORS Hardware (Leveling Devices)

- Clear view of the sky
 - Unobstructed view of the horizon 360 degrees
- No nearby signal reflectors
 - 0.5 m to 1.5 m above horizontal surfaces
- No nearby signal transmitters
 - 300 meters
- Stability
 - Thermal expansion
 - Wind loading
 - Soil expansion/contraction

- Reconnaissance
 - Visibility diagram
 - Photographs of proposed location
 - Measurements for monumenatation
 - Cable routing and type
 - Are drilled holes required in walls
 - Length of cable
 - Type of cable (LMR400 or LMR600)
 - Internet connection
 - Collect 24 hours of data

Building Mount

- Brick/block or concrete building
- Building must be 5 years or older
- Chimney mount requires that chimney be filled with concrete
- No Metal Roofs!!!!!

Monumentation

- Ground Monumentation
 - Concrete
 - Metal

Monumentation

- Drilled-Braced
 - Most stable
 - Specialized equipment required for installation

Monumentation

- Building Mount
 - Rooftop attachment
 - Wall attachment

Monumentation (Building Mount)

- How will you mount antenna
 - Stability
 - Type of attachment
 - Fasteners
 - On site welding required?
 - Tools required
 - Lift truck
 - Ladder

Problem tribrach "feet" cannot be locked height can be changed

Problem lightning rod obstructs satellites

Problem wooden support U-bolts height can change

Antennas on towers with guy wires poor stability

Good top surface of pillar narrower than antenna. Problem no orienting & leveling device

Good orienting & leveling devices

Good rooftop with orienting & leveling device

Installation

- Stable GNSS antenna
- Power and internet connections are successful
- Antenna mount is acceptable to the site manager
- Installation Report
 - Acquired all photos required by NGS
 - Acquire all metadata required by NGS
 - Record all serial numbers
 - Document site contact

- Latency
 - Bandwidth
 - Transmission medium
 - Router and switch performance
 - Firewall
 - Wireless network voice/data traffic

- Reference Station Datum
 - Benefits of using a reference datum that is consistent with the datum used by NGS
 - Easy to verify
 - Consistent with National CORS
 - Can use OPUS to position RTN CORS

- Reference Station Datum
 - Ramifications of using a datum that differs from a datum utilized by NGS
 - OPUS and RTN solutions are based on different reference datums
 - OPUS can not be used to check RTN solutions
 - RTN can not be used to check OPUS solutions
 - Could create confusion with users

Connection to NSRS

- Recommend local static surveys be performed to connect RTN CORS with local NSRS passive stations
 - NCGS uses NGS-58 to connect the CORS to the NSRS
 - Three (3) HARN monuments
 - Two (2) local CORS reference monuments

- Connection to NAVD88
 - Connection completed before CORS antenna is installed or afterwards if offset leveling plate has been installed
 - Field techniques
 - Geodetic leveling
 - Trigonometric leveling
 - NGS -58 survey

Geodetic Leveling to CORS ARP

Geodetic Leveling to CORS ARP

twitter

NC Geodetic Survey on Twitter

- NCGS has developed a Twitter
 web page
 (http://twitter.com/ncrtn), which
 is similar to the NCDOT Twitter
 page (http://twitter.com/ncdot)
- Provides information on the status of NC CORS, RTN, and other web features.

Space Weather

NOAA Space Weather Warnings

2012 CORS Upgrade

- GPS to GPS+GLONASS
 - Durham (DURH)
 - Sanford (SNFD)
 - Troy (NCTR)
 - Winston Salem (NCWS)

- New CORS
 - University of NC at Charlotte
- New location
 - Move HAYW at Haywood Community College to Bethel Elementary School

North Carolina Real Time Network (RTN) Upgrade

CORS/RTN Upgrade

- New Servers
 - Three (3) dedicated servers
 - Housed in the western data center
- Software upgrade
 - VRS3-Net
- New features for users
 - Network status
 - Improvements in iono models
 - Access flexibility

- Schedule
 - Servers purchased and installed
 - Software purchased
 - Installation of software has been completed
 - Beta testing completed

CORS/RTN Upgrade

 NCGS plans to operate both systems until to Geoid12 is available

- The new CORS/RTN system will utilize coordinates from the Multi-Year CORS Solution (MYCS)
 - NAD83/2011

Geoid Model History

Distribution of Control used for the generation of GEOID 09 in North Carolina

RTN Upgrade Notice

Data Flow in the Network

RTN Coverage Area

基準期間:2011/03/01 21:00 - 2011/03/08 21:00 比較期間:2011/03/11 16:30 - 2011/03/11 16:30

国土地理院

Questions?

Gary Thompson, PLS NC Geodetic Survey 512 North Salisbury Street Raleigh, NC 27604 919-707-9230 phone

Gary.thompson@ncdenr.gov